[This is for Grad Students taking the course.]
Computation is central to the foundations of modern cognitive science, but its role is controversial. Questions about computation abound: What is it for a physical system to implement a computation? Is computation sufficient for thought? What is the role of computation in a theory of cognition? What is the relation between different sorts of computational theory, such as connectionism and symbolic computation? In this paper I develop a systematic framework that addresses all of these questions.
Justifying the role of computation requires analysis of implementation, the nexus between abstract computations and concrete physical systems. I give such an analysis, based on the idea that a system implements a computation if the causal structure of the system mirrors the formal structure of the computation. This account can be used to justify the central commitments of artificial intelligence and computational cognitive science: the thesis of computational sufficiency, which holds that the right kind of computational structure suffices for the possession of a mind, and the thesis of computational explanation, which holds that computation provides a general framework for the explanation of cognitive processes. The theses are consequences of the facts that (a) computation can specify general patterns of causal organization, and (b) mentality is an organizational invariant, rooted in such patterns. Along the way I answer various challenges to the computationalist position, such as those put forward by Searle. I close by advocating a kind of minimal computationalism, compatible with a very wide variety of empirical approaches to the mind. This allows computation to serve as a true foundation for cognitive science.
No comments:
Post a Comment